Analytic Approximation of Matrix Functions in L

نویسنده

  • L. BARATCHART
چکیده

We consider the problem of approximation of matrix functions of class L on the unit circle by matrix functions analytic in the unit disk in the norm of L, 2 ≤ p < ∞. For an m × n matrix function Φ in L, we consider the Hankel operator HΦ : H(C) → H −(C), 1/p + 1/q = 1/2. It turns out that the space of m × n matrix functions in L splits into two subclasses: the set of respectable matrix functions and the set of weird matrix functions. If Φ is respectable, then its distance to the set of analytic matrix functions is equal to the norm of HΦ. For weird matrix functions, to obtain the distance formula, we consider Hankel operators defined on spaces of matrix functions. We also describe the set of p-badly approximable matrix functions in terms of special factorizations and give a parametrization formula for all best analytic approximants in the norm of L. Finally, we introduce the notion of p-superoptimal approximation and prove the uniqueness of a p-superoptimal approximant for rational matrix functions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Continuous Discrete Variable Optimization of Structures Using Approximation Methods

Optimum design of structures is achieved while the design variables are continuous and discrete. To reduce the computational work involved in the optimization process, all the functions that are expensive to evaluate, are approximated. To approximate these functions, a semi quadratic function is employed. Only the diagonal terms of the Hessian matrix are used and these elements are estimated fr...

متن کامل

Analytic Approximation of Matrix Functions and Dual Extremal Functions

We study the question of the existence of a dual extremal function for a bounded matrix function on the unit circle in connection with the problem of approximation by analytic matrix functions. We characterize the class of matrix functions, for which a dual extremal function exists in terms of the existence of a maximizing vector of the corresponding Hankel operator and in terms of certain spec...

متن کامل

COVARIANCE MATRIX OF MULTIVARIATE REWARD PROCESSES WITH NONLINEAR REWARD FUNCTIONS

Multivariate reward processes with reward functions of constant rates, defined on a semi-Markov process, first were studied by Masuda and Sumita, 1991. Reward processes with nonlinear reward functions were introduced in Soltani, 1996. In this work we study a multivariate process , , where are reward processes with nonlinear reward functions respectively. The Laplace transform of the covar...

متن کامل

Solving high-order partial differential equations in unbounded domains by means of double exponential second kind Chebyshev approximation

In this paper, a collocation method for solving high-order linear partial differential equations (PDEs) with variable coefficients under more general form of conditions is presented. This method is based on the approximation of the truncated double exponential second kind Chebyshev (ESC) series. The definition of the partial derivative is presented and derived as new operational matrices of der...

متن کامل

A fractional type of the Chebyshev polynomials for approximation of solution of linear fractional differential equations

In this paper we introduce a type of fractional-order polynomials based on the classical Chebyshev polynomials of the second kind (FCSs). Also we construct the operational matrix of fractional derivative of order $ gamma $ in the Caputo for FCSs and show that this matrix with the Tau method are utilized to reduce the solution of some fractional-order differential equations.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008